

EPA Is a Risk-Based Agency

- Agency manages risk to human health and the environment – complex decisions require sound information
- Risk assessment plays a key role in identifying important hazards and in developing management strategies
- Risk is considered a function of exposure and hazard (or toxicity), both of which have inherent uncertainties

Supporting Agency Decisions

- EPA recognizes many new risk situations where characterizing uncertainty important for good decisions
 - -Priority setting
- -Sustainability
- -Regulatory options
- -Homeland security
- Additional utility for VOI and research planning
- Will help Agency meet its transparency goals

Microbial Risk Assessment in EPA

- · Multiple programs and media
 - -Pesticides
 - -Water
 - -Solid Waste
- · Decision makers are confronted with
 - -Complex problems
 - -Complex assessments
 - -Limited data
 - -Short timelines

Chemical vs. Microbial Uncertainties

- Hazard Identification
- -Methodology
- Dose-response relationships
 - -Reconstructing exposure from epidemiological data
- Species extrapolation
 - -Microbial specificity
- Environmental persistence
 - -Decay kinetics
- · Sensitive groups or populations
- -Modes of action

Increasing Analysis of Uncertainty and Variability: Exposure

- · Almost 10 years of experience in quantitatively analyzing uncertainty and variability in exposure
- · Some challenges remain:
 - -Data choices
- -Model uncertainty
- -Propagating uncertainty

Increasing Analysis of Uncertainty and Variability: Toxicity

- · New emphasis on uncertainty and variability in toxicity values
- · Some resistance to quantifying uncertainty
- · Recent scientific advice to the Agency
 - -SAB (Ethylene Oxide)
 - -NAS (Dioxin, TCE)

General Advice From Scientific Community

- · Increase quantitative characterization of uncertainty in dose-response assessments
- · Consideration and use of multiple data sets and endpoints
- · Explicit reporting of criteria for data selection
- · Quantitative presentation of alternative low dose extrapolation models

Supporting Enhanced Consideration of Uncertainty

- · Efforts primarily focusing on chemical risk assessment
- · Need to apply knowledge to microbial issues
- Some EPA product and activities
 - -Risk Characterization Handbook
 - -NAS/Institute of Medicine project
 - -Probabilistic Risk Assessment workgroup

Risk Characterization Handbook

- · Principles of
 - -Transparency
 - -Clarity
 - -Consistency
 - -Reasonableness
- · Risk Characterization helps decision makers
- -Achieve a better-informed decision
- -Understand the science
- -Build trust and credibility with staff, public and stakeholders

NAS/IOM Panel

- · Panel provides independent advice
- Tasked with providing advice on how to improve decision-making under uncertainty
- Benefits
- -Tools
- -Communication -Implementation
- Panel has sought advice from
- -Agencies
- -Industry
- -Academia
- -Environmental groups
- Report expected in fall 2008

Advancing Probabilistic Assessment

Office of Science Advisor Activity:

- White Paper on PRA Utility
- Case Studies
- · Compiling tools, methods, best practices
- Expanded training

Thank You!

Looking to the Future

- · Approaches to public health and environmental decisionmaking under uncertainty:
 - get beyond "we won't know how to use this information"
- Specific tools and methods for informing decisions with quantitative analysis reflecting uncertainty in risks of specific outcomes.
- Methods for communicating uncertainty in risk information to a range of interested parties including decision makers and citizens